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Abstract. This paper deals with the representation of document models used in
the field of document recognition. A novel formalism called generalized n-gram
is presented, which is shown to be accurate for the recognition task and well
adapted to automatic learning by examples. The paper addresses also the thorny
problem of integrating models for document analysis with existing standards used
for document manipulation and production.

1 Introduction

The benefits of using high level descriptions to handle structured documents has been
widely recognized by the scientific community dealing with electronic document pro-
duction. The SGML language providing the DTD mechanism [11] has become increas-
ingly important during the last five years. The document analysis and recognition com-
munity has been dealing with structure recognition for several years too [4, 7, 1]. In this
context, the use of general knowledge, often referred to as document models, describing
the document class to be processed is essential; it is clear that these document models
share many common features with DTDs, at least the generic logical structure.

Very little work has been done so far in order to combine both kinds of formal-
ism [13, 10]. This paper aims to make a significant contribution to reduce the gap be-
tween document models used for recognition purposes and document type definitions
commonly used for structured document handling. In order to achieve that goal, it is
necessary to have a closer look at the features of both formalisms. Statistical informa-
tion appears to be very useful in pattern recognition in general [8] and in document
structure analysis in particular. In the case of documents, for instance, it may be very
useful to know the a priori probability of some elements, or more generally the proba-
bilities of combinations of several of them. In this paper, we present a formalism called
generalized n-grams, that allows us to represent such statistical knowledge and which
is specially well adapted for incremental learning by examples [3].

Section 2 presents the generalized n-grams. Section 3 and 4 focus on its use for the
learning and recognition tasks respectively. Section 5 discusses results of experiments
we have made in order to validate the approach. Finally, section 6 discusses the problem
of integrating the formalism with SGML.
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2 The Generalized n-Gram Model

A generic document model describes the structuring rules of a document class. It defines
in a generic way how specific documents are structured. We distinguish two types of
generic structures: the generic logical structure which reflects the logical organization
of a class of documents and the generic physical structure which represents its layout.
A priori, there exist many ways to represent the generic structure of documents. Among
the existing formats (SGML, ODA, Thot) we will focus on SGML, first because it is an
ISO standard, and second because a multitude of commercial and public domain tools
are available for it.

There are two relevant formalisms to express document models: an SGML DTD de-
fines the logical structure and DSSSL [12] defines how logical documents are translated
to physical documents. These formalisms were defined to standardize the production of
documents. One of their main drawbacks is that they cannot be directly used for the
recognition of documents. Therefore, we have developed a model which has been de-
signed to meet the requirements of document recognition. These requirements are: high
accuracy, error tolerance and automatic inference. The model is presented in the next
section.

2.1 A Statistical Document Model

In our approach, the tree structure of logical documents is represented by probabilities
of local tree node patterns similar to n-grams. N-grams are a commonly used natural
language model [5], which takes the assumption that only the previous n � � words
in a sentence have any effect on the probabilities for the next word. Usually, the n-
gram model is used to represent linear structures such as natural language words, etc.
In order to apply it to tree structures, it has to be generalized. We chose to consider not
only “horizontal” n-grams for siblings but also “vertical” n-grams to take into account
ancestor and child relations.

The power of n-grams lies in the fact that they can predict entities in an incomplete
logical tree, when their context is known. Additionally, each prediction is weighted
with the probability of the corresponding n-gram. The main problem, when n-grams
are extended to more complex structures, is to extend the representation of their context
accordingly. In the next section we propose a generalization of n-gram models to tree
structures.

2.2 Model Specification

In the proposed statistical document model, we represent the context of a node by its
local neighborhood, consisting of left and right siblings, the ancestor as well as the first
and last descendants. A priori, in our generalization of n-grams for trees any value for
n � � is possible. However, our definitions and tests will always be based on trigrams
(n � �). The choice of n � � is also commonly used in natural language processing [5].

The set S of all logical labels is defined as

S � fS�� S�� � � � � Smg



where m is the number of logical labels. The special label S� indicates a “non-existent
node” and is used when a node has no direct neighbor in a specific direction.
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The node x is the first descendant of Sj which is the first descen-
dant of Si.
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The node x is the last descendant of Sj which is the last descen-
dant of Si.

E�x� Si� Sj�

Table 1. Notation used to represent tree patterns.

In the following, the relations L, R, A, B and E are used respectively to express
left sibling, right sibling, ancestor, first (begin) child and last (end) child patterns in a
tree (refer to Table 1). Supposing that the nodes in a tree corresponding to the logical
entities S�� � � � � Sm are labeled, we can define the trigram

li�j�k � P �x � Sk j L�x� Si� Sj��

as the probability that the node Sk is the left sibling of the node sequence Sj—Si. The
trigrams for the other directions are similarly defined:

ri�j�k � P �x � Sk j R�x� Si� Sj��
ai�j�k � P �x � Sk j A�x� Si� Sj��
bi�j�k � P �x � Sk j B�x� Si� Sj��
ei�j�k � P �x � Sk j E�x� Si� Sj���

These basic trigrams enable us to define an entire document model. The complete model
M of a document class is the tuple of all logical entities S and the set of all trigrams G
in a document class:

M � �S�G�
G � fl������ r����� � a������ b������ e�����g

with � � � � m� � � �� � � m

We will now describe how the proposed document model can be generated from a
set of example documents.



3 Learning the Document Model

The learning algorithm must be able to construct the entire model from some examples,
which are represented with their logical structure trees or subtrees. All trees are assumed
to belong to the same document class.

These trees can for example be generated interactively by the user. After having
integrated some samples, the system should be able to run the recognition on a new
document. If the recognition (partially) fails, corrections are manually performed and
the corrected tree is passed to the learning algorithm in order to update the model. This
incremental learning procedure is an important feature of our approach.

To integrate a new example into the description of the left and right siblings, first
and last descendants and ancestor directions we use the same algorithm for every new
example. The example tree Tex is traversed and all trigrams are extracted. The proba-
bility

P �x � Sk j L�x� Si� Sj�� �
P �L�Si� Sj � Sk��

P �L�Si� Sj��

can therefore be estimated as:

�P �x � Sk j L�x� Si� Sj�� �
F �L�Si� Sj � Sk�� Tex�

F �L�Si� Sj�� Tex�

where F �L�Si� Sj � Sk�� Tex� and F �L�Si� Sj�� Tex� indicate the frequencies the
patterns L�Si� Sj � Sk� and L�Si� Sj� were found in Tex. L�Si� Sj� specifies a pattern
of two entities, where Si is the left neighbor of Sj . The conditional probabilities for the
right, ancestor, begin and end contexts are estimated similarly, just by replacing the L
relations by R, A, B or E relations.

Here are some comments on the statistical part of the learning method:

– Incremental learning is trivial, since only estimated probabilities have to be up-
dated.

– The learning method is independent of the order in which learning samples are
provided to the system.

– It is not necessary to keep a tree sample after it has been integrated into the model.
This is different to a rule based approach, where it is often necessary to store sam-
ples after the rules have been generated to enable incremental learning.

– There are no restrictions on the size or “shape” of a sample. It can be a tree of an
entire document or just a small part of it.

4 Recognition of the Logical Document Structure

Our recognition problem belongs to the class of structural pattern recognition. The in-
put is a logical document model and a sequence of elementary physical entities. The
sequence corresponds to the leaves of a specific physical structure tree.

The aim of the recognition task is to construct a logical tree on top of the physical
entities in conformity to the model. As there may be several solutions that conform to
the model, the most likely one has to be found. This is done by means of a conformity
measure between the model and a specific tree.



4.1 A Heuristic Conformity Measure

In the optimization process we need a measure which computes the conformity of a
tree (global) or subtree (local) with a model. The measure should be able to meet the
following requirements:

– The conformity (coherence of a subtree) should increase if nodes are aggregated in
conformity with the model and decrease if the (partial) tree is incoherent. A tree
is incoherent if it contains patterns whose corresponding trigram probabilities are
zero.

– In order to achieve error tolerance, the conformity should not be decreased much
by singular incoherent patterns.

– The overall conformity of an entire tree is determined by the local quality measures
of its subtrees. It might be optimal even if some of the subtrees aren’t.

The model is used to locally evaluate trigram patterns within the considered tree.
For instance, the conditional trigram probability can be interpreted as a plausibility
for each trigram that was found in a tree. This plausibility ranges from � to �, where
� means “totally impossible pattern with respect to a model” and � “given a specific
neighborhood, the existence of an element is certain”. These trigram plausibilities of a
tree are collected and integrated into a plausibility value for the entire tree. An integra-
tion formula, which is used in the area of processing of uncertain information, is the
generalized means function [9]. The conformity function is then expressed as:

q�a�� � � � � an� �� �

�
p�a��

� � p�a��
� � � � �� p�an�

�

n

� �

�

where n represents the number of patterns in the tree and the p�ai� represent the trigram
plausibilities li�j�k, ri�j�k, etc. of the corresponding patterns ai. As shown in Figure 1,
the generalized means function can seamlessly be tuned between the standard fuzzy OR
and fuzzy AND functions by varying the parameter � between �� and ��.

The parameter� of the integration function is best chosen to be somewhere between
(� � 	��� �
). Our assumption is that an entire tree is coherent if all or most of its
trigrams are quite plausible.

fuzzy harmonic geometric arithmetic fuzzy
AND mean mean mean OR

� � �� �� � �� ��

Fig. 1. Functions obtained by varying the parameter � of the generalized means function.

4.2 Construction of Logical Trees

The recognition consists of building the optimal logical tree on top of the physical
entities. A priori, there exists an exponential number of trees that can be built over



a given sequence of leaves. In order to reduce the time spent in finding an optimal
solution, heuristics must be applied. For our prototype, we have chosen a best-first [14]
search algorithm — a classical, well understood and easy to implement optimization
method.

The principle of the construction of a logical tree is that first, the physical entities
are considered as the leaves of the logical tree; second, the logical tree is built on them
step by step by adding nodes. In a bottom-up manner, new nodes are used to group
together leaves and other previous nodes. According to the best-first algorithm, many
competing trees might exist at a time. The current best one, according to the conformity
measure, is selected for further node aggregations. The recognition terminates, when a
tree including all leaves is found.

As an illustration, let us consider the following scenario: The recognition starts with
the leaves in the logical tree to be searched. The leaves are considered as an incomplete
or partial solution p�. The system then makes a hypothesis for a sequence of leaves
to be grouped together to build a subtree. The obtained new partial solution p� is then
tested for its coherence, which is based on the conformity values of all subtrees of p�.
If the conformity value of p� is higher than that of p�, a new hypothesis for grouping
together nodes into a subtree is created to obtain the next partial solution p�. Otherwise,
the node that has been added to p� is a wrong one or it might have grouped together a
wrong set of nodes. In this case, the system restarts with p� but tries another hypothesis
about the node to add, hoping for a better guess.

In order to quickly obtain meaningful logical trees, the aggregation of nodes is
guided by the document model. The model with its trigram information permits the
system to make precise hypotheses on which new nodes are most probable.

Notice that the recognition method is inherently error tolerant. If a physical entity
was badly recognized so that it is not possible to construct an entirely coherent tree,
there is still a good chance of finding a nearly correct tree. It is an important advantage
of the approach that the system not only tries to find as many parts as possible of the
correct tree but also to recognize incorrect parts in order to reject them. These incorrect
parts can easily be found: they are the local parts, where the local tree incoherence could
not be eliminated, even by trying all possible variants. In such a case, either the model
has to be extended with this sample, or the physical information needs to be revised.

5 Results

Due to their complexity, the statistical document model and the learning and recognition
algorithms are difficult to discuss on a theoretical level. The approach has to be properly
evaluated on “real world data” through a deep analysis of (i) the power of the proposed
model to guide document recognition and (ii) the power of the incremental learning in
the generation of stable models.

We have developed a prototype for a first evaluation of the approach. It has been
applied to two sets of documents: scientific articles and multicolumn list of academic
activities at our university. Here, we will be summarizing the recognition results for the
determination of the macro structure of scientific articles. The macro structure consists
of the logical tree structure from the root down to the line nodes of a document. The test



set consists of 20 pages drawn from six articles containing some 1600 logical nodes.
The articles use a non trivial structure including chapters, subchapters, enumerations,
bibliographical references, mathematical formulas, etc.

Figure 2 summarizes the tests. It shows how many logical nodes and which docu-
ments were used to learn the model, which document was recognized and the number
of incorrectly recognized nodes. The error rate in parentheses designates the number of
errors in the solution considered to be the second best according to the quality measure.
We can see that the second best solution in reality corresponds to a better solution than
the one with the higher score. This can be explained with a non optimal definition of
the parameters of the quality measure function. Better choices of these parameters are
subject to future evaluations.

Learning Recognition Errors
#nodes documents #nodes document absolute relative

630 3,4,5,6 859 1 3 (0) 0.3%
629 2,4,5,6 3 (0) 0.3%
470 2,3,4 3 (0) 0.3%
376 2,6 5 0.5%
629 2,4,5,6 170 3 4 (2) 2.4%
435 2,4,5 5 (6) 2.9%
376 2,6 5 (6) 2.9%
630 3,4,5,6 171 2 model incomplete -
470 2,3,4 133 5 3 (0) 2.2%
470 2,3,4 195 6 4 (1) 2.0%

Table 2. Test results for the recognition of the macro structure of scientific articles.

The Table shows that the documents were recognized with few errors in general. It
also shows the improved recognition rates when incremental learning is applied. If only
the documents 2 and 6 were learned, the documents 1 and 3 were both recognized with
5 wrong nodes each. Incrementally adding the documents 4 and 5 reduces the number
of wrong nodes to 3 and 4.

Document 2 could never be recognized because it is the only one which contains
a specific physical element that wasn’t part of the learning set. An element can’t be
recognized if it has never been learned beforehand. Referring finally to the last line of
Figure 2, the experiments also showed that three carefully selected documents can be
sufficient to establish a complete model.

Given these results we can claim from our experiment that the use of representative
samples and incremental learning lead to a model converging towards a stable state.

6 Interfacing with SGML

Most applications dealing with structured documents use DTDs written in SGML to
describe the generic logical structure of documents and DSSSL to specify their pro-



cessing; in particular the DSSSL style language enables the specification of the typo-
graphic style of documents. The generalized n-grams formalism described so far has
been shown adequate for document structure learning and recognition. We now have to
examine how it can be combined with the SGML world.

The information contained implicitly in the generalized n-gram model covers in fact
three different parts:

– a generic description of structures;
– a typographic style description;
– statistical information on frequencies of structural patterns.

The first part may be compared to the generic logical structure as specified by DTDs
in SGML; however transformations are necessary to match the SGML model. Sec-
tion 6.1 presents a method of translating the generalized n-gram paradigm to element
definitions in SGML. The second part dealing with typographic features can be handled
in a natural way, as described in Section 6.2. Our study has not developed this subject
in detail.

The statistical information handling appears to be more delicate, since no equiva-
lent exists for document manipulation and production. Conceptually this information
should be added to the generic structure description, but there is no mechanism for
specifying this kind of information in a DTD. We will outline a solution to this problem
in Section 6.3.

6.1 Inference of Grammatical Rules

The experiments described in the previous chapter proved that the model is expressive
enough to enable successful recognition of document structures. We wanted to know
whether the model is even expressive enough to enable the inference of grammatical
rules, which describe the structure of the learned documents. Such rules could then eas-
ily be translated to an SGML-DTD, which opens the world of SGML for the statistical
model.

To test this, we have developed a prototype for rule inference that is exclusively
based on the generalized n-gram model [2]. We chose the following approach for rule
inference. First, an initial DTD is created which will be far too general. For this, only
the n-grams describing node-ancestor relations are used. Second, these initial rules are
iteratively specialized using node-sibling, node-first-child and node-last-child informa-
tion.

To illustrate the inference of rules, let us consider the following example. Assume
that the system has been presented some subchapter structures which consist of a sub-
chapter node (SChapter) whose children nodes are a subchapter title (ScTitle)
followed by an undefined number of paragraphs (Parag). An example of a subchapter
tree is shown in Figure 2.

After having learned some subchapter trees, the statistical model might look like
shown in the Table 3. For simplicity, only bigrams and a small subset of the model are
shown.

The inference of rules can start, if a complete model was learned. This means that all
relevant n-gram probabilities should be available. The principle of the inference is first
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ScTitle
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Parag . . . Parag
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PP

Fig. 2. Subchapter structures.

Neighborhood left Neighborhood right Neighborhood
of ScTitle of Parag of Parag
aSChapter�ScTitle � � aSChapter�Parag � � rS��Parag � ���
lS��ScTitle � � lParag�Parag � ��� rParag�Parag � ���
rParag�ScTitle � � lScTitle�Parag � ��� rx�Parag � �, for
lx�ScTitle � �, for lx�Parag � �, for all other x.

all other x. all other x.
Table 3. Extract of the bigram model for subchapter structures.

to create a trivial, initial set of rules and then to specialize these rules step by step using
the information provided by the n-grams. This finally leads to a set of more expressive
rules. Here is an example for the inference of the subchapter rule:

1. First all entities which are potential children of a subchapter node (SChapter)
are collected. They are the nodes x, whose bigram probabilities aSChapter�x is great-
er than zero (aSChapter�ScTitle, aSChapter�Parag). Using these bigrams, the following
initial rule can be found:

SChapter� �Parag j ScTitle��

2. Due to the fact that a Parag is never followed by a ScTitle (rScTitle�Parag � �),
that ScTitle can be the first node in a subtree (lS��ScTitle � �), and that Parag
can be the last node in a subtree (rS��Parag � �), the initial rule can be specialized
to:

SChapter� ScTitle� Parag�

3. Finally, a ScTitle can never be followed by anotherScTitle (lScTitle�ScTitle �
�), but an entity Parag can be followed by another entity Parag (rParag�Parag �
�). Therefore the rule can be further specialized to:

SChapter� ScTitle Parag�

The prototype outputs a standard SGML-DTD which can therefore easily be com-
pared to human generated DTDs. The results were very encouraging: with a complete
trigram model the generated rules were accurate and pertinent. The automatically gen-
erated rules basically do not differ from the human generated ones. Slight differences
were found, for example, when a threshold is used to infer an iteration from a sequence
of identical entities. Thus the results of the experiment have shown that the trigram
model for trees integrates relevant information adequate to describe document classes.



6.2 Typographical Attributes

The DTD formalism has been designed to offer a flexible way for the representation of
logical document structures. The typographical representation of these documents can
only be integrated into a DTD with difficulty — there is no standard for it. This situation
has been remedied by the definition of the DSSSL standard.

In the context of the learning of document structures an ideal system should infer a
DTD as well as the appropriate DSSSL description for a set of documents. Both could
then, for instance, be used to regenerate the initial physical documents (possibly after
having edited the content or presentation of the documents). The main problem with this
is the complexity of the DSSSL formalism. In fact, DSSSL is an offspring of the LISP
family and therefore a complete, fully-fledged programming language. The inference
of a DSSSL program based on some document examples is a task that needs human
intelligence. It lies far beyond the possibilities of current inference systems.

However, the problem can be eased by limiting the inference to a subset of DSSSL.
Many simple DSSSL descriptions are mainly composed of uniquely declarative parts
as shown in Figure 3. The inference of such declarations can be achieved by a simple
system which calculates the maximum likelihood of the predefined typographical pa-
rameters like font-size and associates them with the relevant logical entity Parag.

(element Parag
(make paragraph

font-family-name: "Times"
font-size: 12pt
qadding: ’left

)
)

Fig. 3. Example of a DSSSL declaration.

The inverse transformation of a DSSSL description back to the typographical at-
tributes of the statistical model is more complex. In order to be compatible to the stan-
dard, it should be possible to process any DSSSL specification to create an initial model.
This can only be done by completely interpreting a given DSSSL specification. How-
ever, there is no need to re-implement an entire DSSSL engine. Jade [6], one of the most
popular public domain DSSSL processors, provides different output formats calculated
by different backends. Thus, what we need is a backend processor which is capable of
updating the typographical information in the statistical model.

6.3 Statistical Information

Neither a DTD nor DSSSL nor any other formalism of the SGML family offers the
possibility of adding statistical information to a document model. In order to obtain an
equivalence between the n-gram model and the SGML formalisms the latter have to be
extended.



A trivial possibility is to simply copy the n-gram probabilities to a SGML structure
for which a DTD has been defined. There are two main drawbacks of this approach: first,
the n-gram probabilities represent very low level information and are virtually unread-
able by humans. A higher level representation would be useful. Second, in Section 6.1
we showed that a DTD can be inferred out of the set of n-grams. All the information
which is contained in a DTD is therefore already contained in the n-grams. This redun-
dancy should be avoided.

A more optimal approach is to associate attributes to previously inferred DTD rules.
These attributes represent the number of applications of the DTD rules that would have
been necessary to generate the documents of the learning set. In most cases these fre-
quencies, in conjunction with the DTD rules, are sufficient to regenerate a complete
n-gram model. The only potential ambiguity arises when the same logical element ap-
pears more than once at the right hand-side of the DTD rules. In these cases, it is not
clear how many times the element was generated in specific contexts. Figure 4 outlines
how the context information could be added. It simply specifies how often the element
Parag was generated in a chapter or in a subchapter (SChapter).

Notice also, that the formalism as proposed here expresses the statistical properties
at a very high abstraction level. This even enables humans to read or edit such addi-
tional information files. However, we have only presented a preliminary version of the
formalism which has to be consolidated in the near future.

Article: 3
Title: 3
Chapter: 7
Parag: 27

Parag(Chapter): 3
Parag(SChapter): 24

...

Fig. 4. Frequency attributes associated to DTD rules.

7 Conclusion

This paper has dealt with document models used in the field of document analysis and
recognition. A new generic model based on generalized n-grams has been presented: it
has been shown to be accurate enough to recognize logical structures and suitable for
easy incremental learning.

The problem of integration of this model with the SGML/DSSSL world has also
been addressed. In fact, it has been shown that the generalized n-grams model can be
used to generate DTDs in SGML and document style definitions in DSSSL automati-
cally. The problem of translating the statistical knowledge remains partially open and
needs further investigations.



We are convinced that the use of common tools for document recognition and doc-
ument production can notably increase the capacity of both domains. First DTDs and
style descriptions bring necessary knowledge to the recognition process; second docu-
ment models learned from examples and translated to SGML may reduce the cumber-
some task of defining DTDs and DSSSL descriptions by hand.

References

1. O. Akindele. Vers un système de construction automatique de modèles génériques de docu-
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