
1

Towards an ”Interaction Sheet” Mechanism in XML Technology

Frédéric Bapst Christine Vanoirbeek

Swiss Federal Institute of Technology
MEDIA group, LITH-DI

Ecublens, CH-1005 Lausanne
frederic.bapst@epfl.ch

Abstract

In the context of XML, this paper develops the concept of
a style sheet as an interface between the end user and the
encoded information. It argues that the mechanism could
be adapted to address the interaction with XML documents,
including their modification. An extension of the Cascad-
ing Style Sheet language is proposed to express interactive
properties. This extension focuses on a set of document-
centric interactive manipulations, which could help editing
or browsing. Our mechanism, that we called interaction
sheets, is especially useful when the application must spec-
ify a restricted set of authorized modifications, at a certain
step of the document life cycle. When browsers also have
editing capabilities, an interaction sheet would be an alterna-
tive approach to general XML editors (which are sometimes
too permissive) and to Web forms (which are sometimes too
restrictive).

Keywords: Structured documents – Internet – XML –
Style sheets – HTML – CSS – Editors – Human-computer
interaction.

1 Introduction

For a couple of years, the XML technologies have evolved
into a major field of interest in the computer science com-
munity.

With its ultra-rapid development and propagation, XML al-
ready represents both a success story and a milestone in
the Internet evolution. Nonetheless, there are still a couple
of problems that XML technology is not mature enough to
solve elegantly. In this paper, we would like to focus on one
family of questions related to the interaction between the hu-
man user and XML-formatted information. Various points
of view lead to feel the lack of an appropriate mechanism
for the expression of some privileged interactive manipula-
tion commands. More specifically, here are the kinds of im-
provements that we are targeting:

� style sheets: both XSL and CSS are good mechanisms
to express the presentation of XML documents, but
can’t we go a step further and extend the style paradigm
with some interactive properties?

� editors: XML editors are meant to be generic tools, but
why not add them a complementary mechanism to help
tailoring the user interface to the underlying needs of a
particular document in its life cycle?

� forms: Web forms organize the user input into a list
of named fields, but why not allow more structuring,
through directly filling in an XML document, but with-
out losing the current ergonomy supported by forms?

� browsers: web browsers have become powerful soft-
wares, but can’t we separate the page content from the
browsing functionality, and thus help tuning the navi-
gation facilities in a document-centric way?

� links: linking being one of the richest feature in docu-
ment technology, how could a specific document sug-
gest the interactive means that will promote the reinter-
pretation of its contents as link ends?

At a first glance, it may seem that reaching altogether such
a wide variety of improvements is quite a utopy. But in fact
we argue that most of the work has already been achieved
elsewhere, and that the remaining steps are within imme-
diate reach. What needs to be done is to assemble several
pieces of know-how into one relevant mechanism, and to
succeed in its wide adoption among the XML community
(this latter issue goes beyond our intention).

This paper mainly addresses what we call the XML input
dilemma: Web forms are meant to input only a fixed list of
strings, and general XML editors are meant to input full doc-
uments (i.e. any data and structure). We want to support the
intermediate situations, when the user is expected to fill in
an existing template. For example, there should be a means
to express editing constraints at a particular step in the doc-
ument life-cycle. Our proposition, called interaction sheets,
is to XML editors what style sheets are to browsers : an in-
teraction sheet specifies how portions of a document can be
edited, while a style sheet specifies how portions of a docu-
ment can be displayed. In fact, we chose to define a unique
language that embeds the editing and rendering dimensions,
and our proposition is an extension of the CSS language.
This was also an opportunity to propose some improvements
of CSS not concerned with editing, but with the other ques-
tions mentioned above.



2

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the requirements of an interaction sheet lan-
guage, taking five alternative points of views. Section 3 de-
scribes our new language, its semantics, and give some us-
age examples. Finally Section 4 contains some concluding
remarks. The whole discussion is also an opportunity to
comment the current pieces of XML technology, and to re-
consider some of the numerous standards that have recently
grown around XML.

2 Requirements for an Interaction
Sheet

2.1 Style sheets

The concept of style sheets now seems stable and well-
understood. It originally stems from the need to separate
the presentation properties from the logical structure of a
document. In that sense, CSS is admittedly seen as a ma-
jor improvement in HTML technology (although current
browsers do rarely support the full specification). Existing
style sheet mechanisms differ in the richness of the format-
ting model. For instance, XSL can express more complex
structure transformations than CSS. Here we would like to
highlight two other strategic features of a style sheet lan-
guage: the possibility to express instance-specific styles,
and the proposition to add editing properties, which is the
main idea of this paper.

Generic vs Specific

Our first issue deals with the distinction between specific
and generic rules. The underlying philosophy in document
engineering suggests that a style sheet describes a generic
way of formatting a whole class of documents.

But within a single style sheet some rules are more general
than others. For instance, a rule may or not be restricted to
elements of a precise type. To avoid interpretation conflicts,
both CSS and XSL define a priority measure to determine
which rule to apply. At the extreme, both languages may be
used to put so many constraints on a rule target, that in fact
they allow to designate a single element in a specific doc-
ument instance. It is even clearly stated with the possibil-
ity to attach a rule to the element having a special ID value.
When this feature is used, it supposes a conceptual decision
which should be emphasized, e.g. by the clear isolation of
the specific part. Instead of complaining about the danger of
writing specific style sheets, we motivate their benefits, and
propose to go a step further.

Let’s take an analogy with paper documents. Everyone is
used to paint a document with a pen marker to highlight
some portions, for a later reading. There could be various
manners to map this schema onto electronic documents:

a) Get a copy of the document, mark the portions with

an attribute to express the highlight status, and let the
style sheet encode the desired highlighting property
(e.g. background color).

b) Same as (a), but avoid duplication by using a linking
mechanism to build the marked version. For instance,
XLink can express that the referenced fragment should
automatically be displayed at the referencing point.

c) Define an additional style sheet which only modifies
the portions that must be highlighted.

Solutions (a) and (b) have the drawback to build an adapted
copy of the original document. Even with (b), the copy is
not a mere alias, because some parts are modified. Besides,
managing lots of links is hard, and the question of which
style should apply to borrowed contents is not so trivial. So-
lution (c) makes more sense because, conceptually, only the
presentation has to change and not the document contents,
although the visual modification conveys some well-defined
semantics. With this solution, the effect of using the marker
is not to alter the document, but to alter an associated style
sheet (or to build an additional one).

We claim that the marker functionality should definitely per-
tain to the style sheet mechanism. Consequently, it should
be allowed to attach a style not only to a specific element,
but also to some portion that do not correspond to a logi-
cal element. In XML technology, we could use XPointers
to specify the scope of a rule.

From Presentation to Interaction

Our second issue addresses the frontier between presenta-
tion and interactive behavior. We claim that there are some
rendering properties which may include user interaction.
For instance, a collapse/expand functionality can sometimes
be a relevant means to enhance the browsing comfort. Cur-
rent browsers often offer this feature when displaying an
XML document which has no style sheet. But it would be
even more useful when used in conjunction with a format-
ted output, provided that the command is accessible only on
relevant parts, such as chapters or sections titles.

In fact, a style sheet is intended to make the information
more accessible, i.e. to smooth the interface between the
user and the information. From this point of view, looking is
only one kind of human intervention. There is no fundamen-
tal reason not to consider the other aspects of interaction.
Navigating through the information is a useful sub-task of
reading. At the extreme, it may become natural that a style
sheet also helps the user to modify some parts of the docu-
ment (cf. Section 2.2), provided that it is the author’s inten-
tion. The Web shows that documents are not only meant to
be seen, but also to interact with.

HTML had the default to mix everything (contents, format,
forms, scripts). XML should bring a clear separation of con-
cerns. There are some propositions that extend the style
sheet language in order to attach scripts to the events (e.g.
a mouse click on an element) raised on XML elements (see



3

e.g. IE5 behaviors [10] or the action language [2]). It could
be argued that specifying an interactive software requires a
high expression level, and not only a basic callback mech-
anism. Typically, a good specification language would ad-
dress event aggregation or synchronization constraints. It
would be interesting to pursue the idea in the field of HTML
(scripts, forms, etc.) and XML, in conformance with rich
Human Computer Interaction models like MVC [11] or PAC
[5]. This might lead to a declarative means lying at the
cross of software and document engineering. Related ideas,
which could be useful in this field, have already been pro-
posed (cf. the concept of active documents [13], Mozilla
XUL proposition [19], UIML [1], or Fuchs’s architecture
[8]). But our goal here is not to define a general GUI speci-
fication means.

Our motivation is quite different: style sheets are centered
on documents, not programs. We also believe that the
style sheet paradigm should be extended towards interactive
properties. But the considered interaction should primarily
rest on commands dealing with internal document manip-
ulation. So we won’t focus on a general event model (as
in HTML scripts or IE5 behaviors), but on a set of general
predefined behaviors that could be attached declaratively.
These behaviors (like modifying text, inserting or deleting
elements) are concerned with XML manipulation, not with
application-dependent callbacks. The result is a mechanism
that offers content manipulation commands on a document,
not a language to describe a user interface.

2.2 Editors

In general, an XML document is generated either automat-
ically or through some user input. Here are three typical
means to achieve the latter case:

� a general native XML editor;

� a set of Web forms;

� a dedicated user interface, that has to be programmed
(e.g. as an applet, using DOM and Java).

With an XML editor, the author has the greatest liberty to
compose the document. This is not always an advantage,
because the effort of encoding the desired structure is left to
the human users. Here are some means to guide them in this
task:

� use a highly constrained model, that e.g. specifies
mandatory parts; an editor parameterized with a DTD
(or some other schema mechanism) is then able to
adapt the interaction accordingly;

� start the edition with a document template, i.e. a pre-
structured instance with empty contents;

� provide a library of pre-structured fragments, that the
user can easily copy, paste, and then modify;

� offer a macro functionality, so that the user can record
a sequence of commands, and reapply them later some-
where else.

In fact, each of these means has important limitations. A
mechanism to express a document-driven assistance in the
edition is still missing. A document should be considered
within a certain life cycle. Sometimes, its modifications fol-
low a planned workflow (or, alternatively, some business
workflow contains steps that requires some known modifi-
cation of that document). In this sense, an interaction sheet
would encode the hypotheses that characterize one work-
flow step, in order to provide the authors with the most rel-
evant set of editing commands.

Beside input restriction, an important feature of editors con-
cerns the front-end philosophy. For many applications,
the WYSIWYG paradigm is definitely the best approach,
provided that it is supplemented by structure manipulation
functionalities. This has been exemplified, for instance by
the Thot academic environment [17]. For several years,
Thot has been one of the richest editor for structured doc-
uments. Basically, the user directly edits the formatted con-
tents. Several views can be activated, and the corresponding
editing windows are synchronized. Thot was designed ac-
cording to some sound concepts [16] in document technol-
ogy, and uses its own languages to describe document mod-
els, presentation rules, structure transformations, etc.

In XML, WYSIWYG editing means that the front-end is
based on the result of applying a style sheet to the edited
document. This raises two remarks. First, any modification
may imply rendering alteration, so the style sheet should be
often reevaluated. Second, the more powerful is the style
sheet language, the more complex it is to write an editor.
That’s why writing XML editors based on XSL is quite a
challenge, as the mapping from the rendered structure to the
original document is not trivial. Consequently, our interac-
tion sheet mechanism comes as a CSS extension. Imple-
menting structure manipulation commands requires at least
a strong selection management. Then the user interface
could provide the operations as contextual menus. We ex-
pect commands like element insertion or rearranging, but
also a direct access to the values of XML attributes. At-
tributes are generally not rendered in the formatted view,
and editing them should be done in an separate window.

2.3 Forms

The introduction of HTML forms was an important step in
the evolution of the Web, as it allowed some user input
through a standardized way. The data model of the mecha-
nism is a simple set of name/value couples. It is best suited
to the input of a data entry composed of several named
fields. When the requested information may have a more
complex structure (say a hierarchy of nodes), it is necessary
to combine several forms, and to write a piece of code to re-
build the desired document at the server side (an alternative
is to write scripts, but this is beyond the form concept itself).



4

On this point, the new XFDL [4] and XFA [7] standards do
not bring any real improvement. Bridging the gap means to
drop the basic name/value structure and to use instead the
structuring power of XML.

XML becomes the universal format for data repository. In
the XML technology, the specification of the data can be
modeled in a DTD (or another schema language). This DTD
can force the presence of some element (or attribute), as a
form forces to input a value for a named field. In this con-
text, designing by hand a set of forms that would generate a
correct document is a rather wasted effort, because the doc-
ument model contains many hints. For instance, when an at-
tribute is defined over an enumerated type, the form should
contain radio buttons. So a set of input forms can be auto-
matically generated out of the DTD. However, we see two
reasons to supplement the DTD with some additional hints:

� presentation: the designer certainly wants to visually
organize the form elements, or to add some label to de-
scribe the different parts; note that CSS2 also solves the
latter point, with the before property;

� restriction: whereas the DTD specifies the complete
range of possible documents, one step in the applica-
tion may need to input only a portion of the document
(e.g. when the remaining is automatically generated).

An interaction sheet mechanism would be the declarative
language to express these hints.

2.4 Browsers

Current Web browsers are powerful softwares. They are
more than a simple interface to the HTTP protocol. Here is a
typical set of additional features: formatting engines (CSS,
XSL), interpreters for script languages, various Internet ser-
vices (mail, news, ftp), XML parser, security mechanism,
GUI model (HTML forms and events), etc. Browsers are
often distributed with their own HTML editor. By the way,
this shows that the technology is indeed mature enough to
combine browsing and editing, as suggested in this paper
and simulated in the Amaya [14] project. But staying at the
browsing level, the current technology does not allow to ex-
press the navigation capability as a parameter of the docu-
ment.

Basically, browsing means (i) to visualize the information in
a convenient way, and (ii) to navigate in the information, be
it internal or external to the current document. Visualization
is well supported through style sheets. As to the navigation,
we distinguish three typical means:

a) to scroll the page;

b) to follow an explicit link;

c) to reach one of the logical element of the current doc-
ument.

Let’s focus one (c), which suggests the notion of table of
contents. In the HTML world, it is implemented typically
using an additional window (or frame) giving access to the
main entries of the document.

With the current technology, to publish an XML document
on the Web and offer a table of contents navigation help, it
is necessary to write a complicated XSL style sheet, which
would generate HTML frames or scripts. We believe that
the effort is quite high for such a basic functionality. The
same argument applies to the collapse/expand (cf. Section
2.1) functionality. With XML, the Web is intended to access
the information in its original form. For the authors, HTML
seems a too low level model to encode the navigation sup-
port. This is yet an important task, that the machine cannot
automatically guess: only some element types are useful for
an outline view.

It is right that browsers will soon enhance the browsing
power when they correctly handle XLinks. But this only
concerns explicit links, i.e. relations between components
that the author decides to specify. We expect an interac-
tion sheet mechanism to address the specification of implicit
links, i.e. links that are not part of the intrinsic information,
but that are useful to browse it. Current Web pages often
turn implicit links into explicit ones, e.g. when they contain
’back-to-top’ anchors.

So we claim that the browsers should offer a standardized
means (as is the ’history’ or ’bookmarks’ menus) to support
the navigation among implicit links. Our interaction sheet
mechanism makes it easy to associate one or several index
sets (e.g. list of figures) to an XML document.

In fact, the table of contents feature would be elegantly
solved, provided that XML browsers all support synchro-
nized views. When several style sheets are available for an
XML instance, the user could open each one in a different
window. To synchronize these views means to adapt ev-
ery scrolled region to any user selection command (e.g. a
click on an element). There is just a difficulty (already men-
tioned in Section 2.2 about WYSIWYG editing), namely the
non-trivial matching between logical elements and format-
ting flow objects.

2.5 Links

In the document technology, links play a key role: they help
both to avoid information duplication, and to express struc-
tures different from hierarchical patterns. That’s why XML
is supplemented with two languages (XLink and XPointer)
dedicated to linking. Once encoded, an XLink does convey
rich information. But format standardization is only one is-
sue related to linking. Links exploitation and links genera-
tion tools are two others. The former is a currently hot topic
(e.g. parser support, browser behavior). We claim that the
latter also deserves some attention, because rich links are
harder to edit.

HTML links are simple enough to allow an easy input. Not
only the link model is restricted to single (two ends), inline



5

(one end being the link expression) relations, but the point-
ing mechanism is very limited. Indeed, the URL either de-
scribes a full document, or an identified fragment. In both
cases, the URL has rarely to be typed in, because it is easy to
copy it from a browser (either the location or its associated
targets). The only choices concern the relative or absolute
nature of the URL.

With a richer pointing mechanism like XPointer, the ques-
tion is less trivial. There is a huge number of potential tar-
gets (not just the nodes) in a single document, and each tar-
get can be referenced by an infinity of correct XPointers.
The issue is important, because there is no systematic way to
find the most relevant XPointer for a target. In case of a bad
choice, the risk is to break the link, e.g. when the fragment
is moved. Depending on the application, such modifications
may be frequent. The right solution depends on the data con-
text, and may not always follow some naive heuristics (like
stepping down from the last node owning an ID).

Of course, the best way to anticipate a link end is to put an
ID to the element. But it is not always possible: the inter-
esting portion may not correspond to an element, or the web
publishing service has not the right to modify the document.

When an application requires the manual input of links, any
support constraining the XPointers has to be specifically
programmed. Our interaction sheet mechanism offers to ex-
press such constraints declaratively, so that the editor can it-
self assist the user in his linking task.

It is worth noting that besides links editing, our proposition
is also useful for mere browsing, e.g. when the user main-
tains a list of bookmarks at a sub-document level.

Finally, it could be argued that the desired effect (providing
a relevant XPointer to a certain target) could be obtained in
a separate document, containing a set of links. But the pri-
mary goal of links is to express logical relations among doc-
ument parts, not to suggest how a portion should be refer-
enced.

3 Sketching a New Mechanism

3.1 Basic Principles

Basically, we chose to reuse the general philosophy of the
CSS standard, which proves to be powerful and easy to un-
derstand. An interaction sheet contains a list of rules, each
associating a property value to a selector, i.e. the scope of
the rule. The mechanism is specified through (i) the list of
properties with their possible values, and (ii) a combination
protocol based on a specificity measure.

In fact, we decided to stay even closer to CSS. Because pre-
sentation is part of interaction, any CSS style sheet should be
a valid interaction sheet, without any change in the semantic
behavior.

Our extension of the current CSS standard is twofold. First
we extend the selector language. Second and most impor-

tant, we define new properties and their underlying seman-
tics.

Note that we use the original CSS syntax. It could be rede-
fined in an XML format, to take advantage of existing tools
like parsers. This would not influence the concepts itself,
only the implementation.

3.2 Selectors

As already stated in Section 2.1, we propose to allow any
XPointer [12] as a rule selector. This way, the properties
may also be attached to a portion that does not correspond
to a document node. The argument is that the information
structure is not always the right one for a particular task
like rendering. This was already admitted in CSS2 with the
notion of pseudo-elements. Offering the whole power of
XPointers may be very general, but it takes advantage of an
existing standard, and opens the field for unexpected uses.

There should be a syntactic hint to determine the presence
of an XPointer instead of a CSS-like selector. For instance,
an XPointer selector may be surrounded by something like
xptr(...).

Note that the use of XPointers as a selection mechanism is
orthogonal to the use of properties. The main goal of in-
teraction sheets, namely the support of constrained editing,
does not at all require a change in the selector language. But
as we define an extension to CSS, we take the opportunity to
suggest a refinement of the selector means.

3.3 Interactive Properties

In this section, we propose a set of new properties that
meet our requirements. The major choice concerns the
management of the allowed editing commands. A simple
Read/Write flag (in CSS, ’display:none’ could yet be inter-
preted as ”unreadable”) is not sufficient, because we want
to provide a finer control over the document modifications.
Our proposition consists of two properties (editable and
editable-attr), and makes it possible to update only
one attribute value, or to reorder sibling elements without
the right to alter the text. Here we suppose that the selec-
tion is always allowed (and can be used in a ’copy’ com-
mand), but the modification (e.g. a ’cut’ or ’paste’) must be
accepted by the interaction sheet.

We don’t want to restrict the possible values of the input
data: this should be done at the model level (DTD or other
schema language), and we don’t see a good reason to impose
any further constraints. For instance, when the DTD defines
an attribute as type IDREFS, we expect the browser/editor to
reflect this constraint, typically via a multiple selection list
giving all existing IDs.

The three other properties (collapsible, anchoring
and indexed-in) are minor improvements suggested in
Section 2.



6

Propertyeditable. This property describes the editing
rights allowed on the target. The following values are de-
fined (and can be combined in a list when it makes sense):

� none: no modification is allowed (default);

� text: it is allowed to modify the textual content at each
point of the target;

� insert: it is allowed to insert new elements everywhere
in the target (according to the DTD if available);

� reorder: it is allowed to move any (completely con-
tained) sub-element within the target (according to the
DTD if available);

� full: it is allowed any modifications in the target, such
as editing the text, add or remove sub-elements.

Propertyeditable-attr. This property must be used
only when the scope is at the element level (not on sub-
element XPointers). It indicates which attributes are subject
to modification. The following values are defined:

� none: no attribute can be edited (default);

� all: all attributes can be edited (according to the DTD,
when available);

� only(att1 att2 ...): only the given list of attributes can
be edited;

� all-but(att1 att2 ...): all attributes can be edited, except
those given in the list.

Property collapsible. This property describes how
the target should behave as to the collapse/expand function-
ality. The choice of how to provide the commands is left to
the browser. On visual agents, we typically expect either a
small button at the beginning of the target, or a contextual
menu. Browsers may offer global commands like ’collapse-
all’ or ’expand-all’. The following values are possible:

� none: the target is not subject to the collapse feature
(default);

� on: the target supports collapse/expand, and is initially
collapsed;

� off: the target supports collapse/expand, and is initially
expanded.

Property anchoring. This property indicates one (or
several) XPointer that is intended to serve as a relevant
expression for referencing the target. Most often, this
XPointer will directly point at that target, though it is not
mandatory. The browser is free to decide how to use this in-
formation. On visual agents, we typically expect a contex-
tual menu (available when the selection is within the target)
with the effect to copy the XPointer into the clipboard (for

later pasting as an attribute value in any link element). The
anchoring property is relevant in situations when the tar-
get is likely to be reused as a link end (but has no ID), and
the direct path from the root element is not the most robust
way to reference it (e.g. some rearrangements are expected).

Property indexed-in. This property is used to add the
target to one (or several) index set. An index set is intended
to provide a collection of implicit links that may be useful
for browsing. An index set is referenced with an id (as are
counters in CSS), that the browser may use as the title of a
related menu. As described here, the indexed-in feature
does not give much control on the organization of those in-
dex sets, as it gives a mere list. It is hard for the browser
to guess a relevant indented display that would reflect the
structure of the outline (e.g. sub-sections). As we already
stated (cf. Section 2.4), this property will be of little use
when editors/browsers support synchronized views.

3.4 Execution Model

Rule Interpretation. The previous section explained the
meaning of our proposition about new properties. There is
yet to define how a list of rules should be interpreted. The
selector language extension requires an adaptation of the
scope computation. In fact, we must extend the CSS speci-
ficity measure to allow for XPointer selectors. Here is an
informal possible definition. An XPointer selector is more
specific than any CSS selector. If an XPointer references
a target that is entirely contained in the target of another
XPointer selector, then the former is more specific. In the re-
maining cases, the rules lexical order determines the speci-
ficity.

Update Protocol. Adding editing commands to CSS
raises the question of storing the updated document. Basi-
cally, we suppose that the editing commands only affects
the local copy of the document, at the client-side. This
confirms a general shift of capabilities from servers to
clients in Web design. But most applications will need a
way to transmit the modified document back to the server.
The basic HTTP protocol (e.g. with the PUT method) is
probably not powerful enough, if we consider concurrent
accesses and the lost-update problem. So our interaction
sheet mechanism would better be used in conjunction with a
platform like WebDAV [18], which allows for concurrency
and versioning.

User Interface. Our proposition supposes that several
commands are available when browsing a document
through its interaction sheet: collapse/expand, type text,
insert/move/delete elements, edit attributes, get an XPointer
expression for the current selection, etc. We do not want to
impose the detailed user interface, because this would put
strong assumptions on the browsers philosophy, or even



7

on the media type. But we clearly have in mind a kind of
WYSIWYG behavior.

Dynamism. The extension of CSS towards document
editing commands raises an interesting problem about dy-
namism: which rule should apply to the parts being modi-
fied? Presently, we suppose that the end user has a total con-
trol over the document portions that he is editing. In other
words, the interaction properties should not be re-evaluated
after each user intervention. Otherwise, there is a risk that
the user gets or looses access rights in an ill-timed way. But
we believe that the question deserves a deeper analysis. By
the way, the CSS specification also defers that question of
dynamism (e.g. when a script modifies the dimensions of
an element).

3.5 Example: Requests for Proposals

In this section, we discuss a business situation where docu-
ment management is of central importance. The case study
concerns requests for proposals. In fact, it is this applica-
tion that made us feel the lack of an interaction sheet mech-
anism. The examples below illustrate the use of our interac-
tive properties. Only standard CSS selectors are used.

3.5.1 Overview of the Process.

Requests for proposals (RFP) represent an important
business-to-business process. This is a kind of demand-
driven commerce. Roughly, the buyer publishes the project
specification as an RFP, then the potential suppliers sub-
mit their offers, and finally the buyer chooses the best
candidate. Inbetween, there is usually the possibility to
discuss ambiguities in a forum-like way. An emitted RFP
contributes to (i) specify the buyer’s needs, (ii) to officially
and widely announce the buying intention, and (iii) to
prepare the comparison step by constraining the contents of
the proposals.

There is now an increasing interest to design electronic plat-
forms acting as RFP market places [3]. In this context of
electronic commerce, document formats like HTML/XML
play a decisive role. Several other factors make RFPs in-
teresting with respect to an interaction sheet mechanism: (i)
the documents are shared between team members, both for
reading and writing; (ii) the structure of the offers is part of
the requirements; (iii) the evaluation report contains many
rating, comments, and comparison links; (iv) the documents
are mainly designed by and for human brains.

3.5.2 Editing a Request for Proposals.

An RFP is a strategic document with which several busi-
ness services are concerned (marketing, production, finance,
etc.). Thus it is often the result of many contributors, un-
der the responsibility of a project leader. The leader may

have the exclusivity of the document editing (through the
agglomeration of all other pieces), but the process could also
be driven in a more document-centric way, with shared ac-
cesses. With a set of interaction sheets, it would be possible
to assign each part of the RFP to the right employee or ser-
vice.

For example, the commercial service may be responsible to
compose only one section of the document. Its interaction
sheet could then contain the following rules:

section: { editable:none
collapsible: off;
indexed-in: paperOutline;}

section[id="sct.comm"]:
{editable: full;

collapsible: on; }

The DTD could define an attribute isLegal intended for
the legal service to approve the content of each section. This
service could receive the RFP with an interaction sheet con-
taining:

section: {editable-attr:only(isLegal);}

3.5.3 Editing a Proposal.

In the RFP process, the buyer prepares the canvas of the of-
fers, in order to anticipate the comparison phase. There is
often one part of the RFP which is a ready-to-fill offer tem-
plate. Its structure is imposed by the buyer, and the contents
is under control of the supplier. The RFP document could
be supplemented with an appropriate interaction sheet re-
flecting this schema. Let’s suppose that the section divisions
have an attribute isLeaf saying whether or not the tem-
plate imposes subdivisions. Then here is a possible excerpt
for the interaction sheet provided to the suppliers:

part[id="offerTempl"] section[isLeaf="yes"]:
{editable: full;}

part[id="offerTempl"] section[isLeaf="no"]:
{editable: text;}

Using such a sheet would insure the supplier that his offer
keeps conform to the buyer’s intentions. Note that writing
an offer goes far beyond filling in a form, and requires a
real editor. For instance, the supplier may consider that a
requested sub-section needs a further decomposition. Nev-
ertheless, the buyer wants to ensure that the correspond-
ing document respects his template (section names, perhaps
even attributes that will be used by the evaluation frame-
work). This is a typical case where highly constrained edit-
ing is needed, showing the main advantage of our interaction
sheet mechanism.

3.5.4 Evaluating the Proposals.

The evaluation phase is reported in a document, called the
evaluation report, for which there are usually several writ-
ers. But distributing the access rights among the evaluation



8

team is not the only possible application of our mechanism.
For instance, the buyer maintains a collection of criteria, that
are to be used for the evaluation. Maybe these criteria are
known to be related to precise parts of the offer template. In
order to guide the reading of the proposals, we could provide
one (or several) index of criteria, to point to the correspond-
ing portions of the common offer template. So every offer
could be displayed with the same interaction sheet holding
the most useful locations, e.g.:

part[id="offerTempl"] supplier nbEmployees,
part[id="offerTempl"] supplier location,
part[id="offerTempl"] section[id="warranty"]:

{indexed-in: admissionConditions;}

part[id="offerTempl"] section[id="experience"],
part[id="offerTempl"] section[id="pricing"],
part[id="offerTempl"] section[id="delays"]:

{indexed-in: basicCriteria;}

part[id="offerTempl"] section[id="summary"],
part[id="offerTempl"] section[id="remarks"]:

{indexed-in: overview;}

Finally, in the evaluation report, most of the material (com-
ments, ratings, etc.) will contain references to portions of
the offers, so links management is important. However, we
don’t see an obvious application of the anchoring prop-
erty in that particular example; one reason is that the offer
documents are not supposed to change during the evalua-
tion, and thus the robustness of link ends is not threatened.

4 Conclusion

In this paper, we have proposed an interaction sheet mech-
anism as an additional stone in the XML technology. This
work is driven by two major motivations:

� to reach a better separation of concerns between infor-
mation and its access, i.e. between an XML document
and the way it is submitted to the user intentions;

� to solve the XML input dilemma (editors are too per-
missive and forms too rigid), and let the editor/browser
guide the user thank to a specification of the authorized
document modifications.

We follow a general trend in Web technology, namely ex-
pressing the most useful customization tools in a declara-
tive way. The XML machinery should offer simple means
to solve common needs, whereas any non-standard applica-
tions can always rely on dedicated software development.
Our proposition agglomerates different ideas. Some of them
represent only shallow changes, like adding to CSS the com-
mands for collapse/expand and table of contents. But we
also bring a few deeper innovations, like the use of XPointer
for rule scoping, and above all the support for document-
centric editing. There are also some ideas that are probably
not mature enough, such as the anchoring property.

In general, XML is a good opportunity to go towards an en-
vironment aware of the document life cycle. This paper is
an attempt to open the discussion and to encourage some im-
plementations. As to the perspectives, we expect two direct
extensions of the present proposition:

� Integrate our mechanism with the access rights aspects
of the collaborative edition approach (cf. Byzance
[6]). We could forbid at the server side the access to
the document without the authorized interaction sheet.
It may be useful there to consider encryption tech-
niques, if the interaction sheet serves as an authentica-
tion means.

� Define a mechanism to express the whole life cycle of a
document. This means declaratively connect together
several interaction sheets, thus linking each step of the
planned document evolution.

Combined together, these two improvements would lead to
an environment that fully specifies the workflow associated
with the document manipulation, from the user interaction
perspective. This is certainly a promising objective to draw
document management and business workflow (for which
documents are used) closer together.

Another issue will deal with the interactive specification of
an interaction sheet. What user interface commands would
be appropriate when editing an interaction sheet? Note that
this is already an interesting topic in CSS engineering [15],
and a promising approach is model inference from a set of
formatted samples.

Finally, the crossroads of XML and Human Computer Inter-
action could be the source of completely different research
directions. One would deal with multimedia documents (i.e.
with time dimension), which often imply a kind of inter-
action. Section 2.1 suggested the question of specifying in
XML a detailed user interface. As another issue, it would be
interesting to design a general framework to trace the user
interventions as an XML document: given an interactive
software and the list of possible commands, the goal would
be to report the sequence of interaction events occurred dur-
ing a session. This would be a concrete step towards the ma-
nipulation of an interaction algebra, as defined in some Hu-
man Computer Interaction models like the User Action No-
tation [9].

References

[1] Marc Abrams, Constantinos Phanouriou, Alan L. Ba-
tongbacal, Stephen M. Williams, and Jonathan E.
Shuster. UIML: An Appliance-Independent XML
User Interface Language. In Eighth nternational Wrld
Wide Web Cnference(WWW8), Toronto Canada, May
1999. http://www.harmonia.com/papers/www8/.

[2] Vidur Apparao, Brendan Eich, Ramanathan Guha,
and Nisheeth Ranjan. Action Sheets: A Mod-
ular Way of Defining Behavior for XML and



9

HTML . Technical report, W3C, June 1998.
http://www.w3.org/TR/NOTE-AS.

[3] Frédéric Bapst and Christine Vanoirbeek. XML
Documents Production For An Electronic Platform
of Requests For Proposals. In International Work-
shop on Electronic Commerce (WELCOM’99), part
of the 18th Symposium on Reliable Distributed Sys-
tems (SRDS’99), Swiss Federal Institute of Technol-
ogy, Lausanne, October 1999. IEEE.

[4] John Boyer, Tim Bray, and Maureen Gordon. Ex-
tensible Forms Description Language (XFDL)
4.0. Technical report, W3C, September 1998.
http://www.w3.org/TR/NOTE-XFDL.

[5] Joëlle Coutaz, Laurence Nigay, and Daniel Salber.
Agent-Based Architecture Modelling for Interactive
Systems. In David Benyon and Philippe Palanque, ed-
itors, Critical Issues in User Interface Systems Engi-
neering, chapter 11, pages 191–210. Springer, 1996.

[6] D. Decouchant, M. Romero-Salcedo, and M. Serrano.
Principes de conception d’une application d’édition
coopérative de documents sur internet. In IHM’97,
1997.

[7] Gavin F. McKenzie et al. XFA-Template and XFA-
FormCalc. Technical report, W3C, June 1999.
http://www.w3.org/1999/05/XFA/xfa-template.

[8] Matthew Fuchs. The User Interface as Docu-
ment: SGML and Distributed Applications. In
Computer Standards and Interfaces, volume 18,
1996. http://cs.nyu.edu/phd students/

fuchs/index.html.

[9] Deborah Hix and H. Rex Hartson. Developing User In-
terfaces – Ensuring Usability Through Product & Pro-
cess. Wiley, 1993.

[10] Alex Homer. XML IE5 Programmer’s Reference.
Wrox, 1999.

[11] P. Johnson. Human Computer Interaction – Psy-
chology, Task Analysis and Software Engineering.
McGraw-Hill, 1992.

[12] Eve Maler and Steve DeRose. XML Pointer Lan-
guage (XPointer). Technical report, W3C, 1998.
http://www.w3.org/TR/WD-xptr.

[13] V. Quint, I. Vatton, and J. Paoli. User Interfaces
for Symbolic Computations, chapter Active Structured
Documents as User Interfaces. Springer Verlag, 1996.

[14] Vincent Quint and Irène Vatton. Using
Amaya. Technical report, W3C, 1999.
http://www.w3c.org/Amaya.

[15] Hélène Richy. Document Style Design by Direct Ma-
nipulation. In Roger D. Hersch, Jacques Andr, and

Heather Brown, editors, Electronic Publishing, Artis-
tic Imaging and Digital Typography (RIDT’98), num-
ber 1375 in Lecture notes in computer science, March
1998.

[16] Cécile Roisin and Irène Vatton. Merging Logical and
Physical Structures in Documents. In International
Conference on Electronic Publishing, Document Ma-
nipulation and Typography (EP’94), Electronic Pub-
lishing, pages 327–337, April 1994.

[17] Irène Vatton, Cécile Roisin, and Vincent Quint. Thot
Reference Manual. Technical report, INRIA, 1998.
http://www.inrialpes.fr/opera.

[18] Jim Whitehead and Meredith Wiggins. WEB-
DAV: IETF Standard for Collaborative Au-
thoring on the Web. IEEE Internet Comput-
ing, pages 34–40, September/October 1998.
http://www.webdav.org/papers.

[19] Dave Yatt. Introduction to a XUL Doc-
ument. Technical report, Mozilla Org.,
1999. http://www.mozilla.org/xpfe/

xptoolkit/xulintro.html.


