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Abstract. Even if font usage plays an important role in Document Image Analy-
sis (DIA), recognition systems generally take the concept of font management in
a weaker sense than in the production cycle. With the point of view of the docu-
ment recognition community, we show how typographic information (characters
bitmap, metrics, etc.) can improve existing analysis methods. After a brief survey
of font recognition issues, we present the advantages of a font software support in
the design of recognition systems. Concrete algorithms are proposed in the sub-
topics of a posteriori font recognition, monofont Optical Character Recognition
(OCR), and word segmentation. The reported experiments and results indicate
that there are still substantial benefits to expect from the design of typography-
aware analyzers.

1 Introduction

One of the goals in Document Image Analysis (DIA) is the automatic recognition of
printed text. Depending on the application, the central subtask of Optical Character
Recognition (OCR) needs to be completed with various levels of layout analysis, for
instance block and line segmentation, read-order chaining, font or justification mode
identification, and so on. The font attributes represent rich formatting parameters, be-
cause they give some hints about the document logical structure (which denotes the
author’s point of view).

Although document recognition has been concerned with fonts for a long time, ty-
pographers would certainly agree that only superficial aspects of font management are
generally involved. We claim that a deeper study of typeface design [2, 12–14] brings
an original lighting on recognition problems. The goal of this paper is to draw DIA and
typography closer together. More specifically, we want to show how existing recogni-
tion techniques can be improved when the font concept is considered as seriously as
in document production. As well as revealing an interesting example of know-how in-
tegration inside our CIDRE 1 project2 [4], this topic leads to applicable algorithms for
our community of DIA engineers.

The remainder of this paper is organized as follows: Section 2 describes to what
extent font management is considered an important component in DIA research; after
this brief survey, we advocate the use of a relevant font management toolkit in DIA.
Section 3 presents some recognition algorithms that take advantage of typographical
knowledge. Our concrete experiments and the related results are exposed in Sect. 4.
Finally we draw some conclusions.

1 For Cooperative & Interactive Document Reverse Engineering.
2 Supported by the Swiss National Fund for Scientific Research, code 21-42’355.94.



2 From Weak To Strong Font Recognition

Many document recognition systems have to deal with fonts, especially during the anal-
ysis of logical structures. Font recognition is often taken in the weak sense, meaning
that the goal is only to discover font changes in the document. In the strong sense, font
recognition consists in describing the font package that was used during the formatting.
This section evokes previous studies and explains that distinction.

2.1 Font Discrimination

We talk about font discrimination when a recognition system is able to detect the num-
ber of fonts used in a page, and to partition the entities (e.g. paragraphs or words)
following this criterion. In this approach, the goal is to group together entities of the
same font, not to find the exact specification of those fonts.

Sometimes the analyzer goes one step further and tries to qualify the results with
informal font attributes, using tags for italic, bold, fixed-pitch or serifs. But these are
only some hints and the exact typeface is still unknown. In other cases, it is during the
learning phase that the user gives a symbolic name to each font.

Several approaches to font discrimination were proposed in research projects: Shi et
al. [21] focus on the recognition of font families; Morris [17] performs spectral analy-
sis; Baird et al. [3] propose an adaptive 100-font classifier; Duffy et al. [8] use prototype
extraction and heuristic edition rules; Zramdini [23] uses global features and Bayesian
classification (see Sect. 3.1). Some commercial OCR software [9, 18] also offer a lim-
ited form of font recognition.

For the DIA community, font discrimination is often sufficient. In dedicated ap-
plications for instance, the document class often fixes the possible fonts set; thus the
meaning of fonts can be given prior to the recognition task itself.

2.2 Font Understanding

Font understanding supposes a formal definition of fonts, based on existing typography
standards. The goal is to find what precise typeface was used at typesetting time. This is
a strong requirement, because it brings the recognition results finally closer to the pro-
duction phase. On the other hand, DIA may try to exploit the typographers’ knowledge.

Some interesting ideas have been proposed in this context: Kopec [15] estimates
font metrics (e.g. left and right bearings) from images. Hobby et al. [10] compute a
high-resolution character outline from a set of low-resolution scanned samples.

Instead of actually recomputing the fonts, we claim that the recognition methods
could at least make use of the same formats and tools as in typography. The effect is to
give access to the huge collection of fonts that are available for the production. Once
the recognition system can access such a knowledge base, it is likely that the fonts of
the documents being recognized will match an existing font. Although the “classical”
typefaces (like Times or Courier) exist in a great number of declinations, the precise
character shapes should not change too much between designers or foundries.



2.3 Software Support

Strong font recognition forces the developers of recognition algorithms to represent the
fonts in a rich data structure. The underlying software environment must offer facilities
to install or load a font, ask for its character set and metrics, generate or display for-
matted text, and so on. Fortunately, this can be simplified through the reuse of existing
toolkits.

In the CIDRE project, we designed a software platform that integrates recognition
algorithms and typography management. The goal is to offer a relevant programming
support, so that the document recognition analyzers can exploit all the information en-
capsulated in font definitions. Concretely, we chose to manipulate the fonts via the X11
system, with the following advantages:

– it offers a C interface (Xlib) to access all information about the fonts, e.g. the met-
rics (see Fig. 1);

– scalable fonts are allowed, thus avoiding multiple sizes in the font database;
– it accepts the installation of PostScript fonts, one of the most important standards;
– font aliases are supported, in order to name fonts in a consistent way;
– it is already installed in virtually all Unix systems.

Fig. 1. Font metrics in Xlib (taken from Xlib Programming Manual).



3 Some Analysis Methods Based on Typography

This section discusses a few examples that show how document recognition systems
could take advantage of typographical information. The analysis methods themselves
are certainly not new, but we find interesting to present some variants that exploit a
thorough font management support.

3.1 A Priori Font Recognition

Figure 2 reminds of the two major approaches to font recognition [23]. The a priori
methods do not require OCR results and generally have a low time complexity. On the
other hand, their accuracy drops for the analysis of short pieces of text, in which case
an a posteriori algorithm is more appropriate (see Sect 3.2).
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Fig. 2. OCR and OFR (Optical Font Recognition) (taken from [23]).

In his PhD thesis [23], Zramdini developed the a priori font recognition system
ApOFIS, that allows the identification of the typeface, weight, slope and size from a
given image of text. It uses a font model base generated by learning from training sets.
Font models are computed from features vectors, which represent global typographical
properties extracted from text strings. ApOFIS also supports incremental learning.

Instead of using scanned samples for the learning phase, our software platform is
now able to generate synthetic images for any installed font, and to compute its corre-
sponding font model. Thus the analyzer gains in generality, but at the price of a small
decrease in accuracy when the degradation in document images is too extensive [22].



3.2 A Posteriori Font Recognition

When the a priori approach is not applicable, the alternative is to look locally at the pre-
cise character shapes. In our proposition, we make the following hypotheses: word seg-
mentation results with their correct ASCII interpretation are provided, and each word
was formatted with a single font. It would not be reasonable to require exact character
bounding boxes, because it proved to be unreliable, especially for slanted typefaces.

This problem can be addressed using simple pattern matching. Recognizing the
font of one word consists roughly in formatting the same text using each font in the
database, and computing a dissimilarity measure from the original image. The ideal
word width is computed using font metrics; the difference with the effective word box
is then distributed among the character frontiers, to obtain a synthetic word of the same
width. A trivial similarity score counts the black pixels after an XOR operation on both
images. The algorithm can be used to estimate the closest font in a given font set, or to
validate the ASCII string when the font is known.

Our brute-force method can be refined in two complementary ways. First, we try a
few pixels shifts on the coordinates of each characters to optimize the possible match-
ing. Second, we use ternary instead of binary masks [11], to reduce the effects of spatial
sampling [16]; characters skeletons and envelopes are pre-computed using morpholog-
ical operations (erosion and dilation). The time complexity is reduced by filtering out
unrealistic comparisons, e.g. according to the word height.

3.3 Monofont OCR

Whereas the trend in OCR development (especially in commercial products) has grown
toward general omnifont technology, we still feel a high interest in monofont devices.
Sennhauser [20] shows how OCR can be improved using typographical constraints.
Now that font recognition has reached a stable state, the expected robustness and accu-
racy of monofont analyzers make them a serious alternative. By the way, there are some
digital typefaces explicitly designed for the OCR process (the fonts OCR-A and OCR-B,
but also Bigelow’s recent Lucida-Sans-OCR [5]).

The basic idea used for a posteriori font recognition can be adapted to develop a
generic monofont OCR, i.e. which takes as parameter the name of an installed font. The
OCR engine will take advantage of typographic knowledge, namely the ideal bitmap
shape of all characters and the expected geometric relations between any sequence of
them.

Let’s sketch a naive algorithm. Suppose you know the bounding box of a word, its
underlying baseline3, and its font. Then the text can be guessed iteratively by finding
the best match for the first character prefix; starting from the left, the position of the
next character is estimated using font metrics, until the right bound is reached. At each
position, the method tries to superimpose every printable characters and evaluates a
matching score with the original image.

Some problems should not be underestimated [11]. As in Sect. 3.2, spatial sampling
or local shifts may have significant effects. The matching function should allow for the

3 The baseline can also be estimated as the bottom coordinate of the word box, maybe with an
offset of the font descent.



possible overlapping of consecutive character bounding boxes. As suggested in Fig. 3,
the white mask should follow the frontiers of the character shape instead of filling the
whole rectangle. But the matching function must not systematically drop the question
mark (?) for the dot (.), or the double quote (”) for the apostrophe (’). The accuracy
may also be increased using backtracking, i.e. looking for an optimum match for 2- or
3-grams instead of single characters. It is also possible to rank the characters by their a
priori frequencies.

Fig. 3. Skeleton and envelope masks for monofont OCR.

In spite of these difficulties, such a monofont OCR offers four considerable advan-
tages: first, it is robust to connected components, whereas many other OCR have dif-
ficulties with touching or split characters. Second, the recognition results will give the
exact position of the individual character. Third, the method is not disturbed by kerning
effects. Fourth and most important, a naive version can be developed in a few hours,
which leaves plenty of time to perform accuracy tests on many fonts or to try some
refinements. It is then a good way of designing a sound OCR package, with expected
performances close to commercial softwares.

3.4 Word Segmentation

The segmentation into words is not a completely solved problem in DIA. Most tech-
niques to detect space characters analyze the horizontal spacing inside the text lines,
using e.g. run-length smoothing algorithms (RLSA) or projection profiles, but in a
context-insensitive way. Figure 4 shows why these methods cannot achieve 100% ac-
curacy: for lots of fonts, especially italic ones, horizontal spacing inside a word may be
greater than between words, depending on the characters involved. We stated that even
with well-known fonts and non-exotic text, neither RLSA nor projection profiles can
detect the space character without mistakes.

That’s why the knowledge of the ASCII interpretation is decisive for the recognition
of word separators. A first family of methods for a posteriori word segmentation makes
use of lexical knowledge to reject invalid frontiers or propose valid ones. This idea is
interesting but not general, because it requires that the language of accepted words is
known in advance.

Here we propose a second a posteriori approach, strictly based on font metrics. The
idea is once again very simple: we suppose that the bounding boxes of each characters
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Fig. 4. Exact spacing computed from font metrics (for tm-r-i-10, at 300 dpi).

(or at least of word substrings) and its ASCII interpretation are provided. Then, using
the distances of left and right character bearings, we can compute their ideal horizontal
spacing with or without a space separator. The decision is finally based on the differ-
ence between theoretical and effective spacings. Note that the inter-word spacing is an
elastic measure according to the justification mode, but the font metrics will give an
approximation for the minimal gap. On the other hand, the inter-character metrics are
supposed to be only determined by the font4, possibly with the help of kerning tables.

3.5 Application-Specific Recognition

The previous subsections implicitly focused on a poor variety of printed documents. An
immediate generalization concerns non-Latin alphabets (Arabic [1], Chinese [7], etc.),
where the OCR task is quite more challenging, notably because of the influence of the
context. But among the multitude of existing fonts, some were also dedicated to convey
very specialized kinds of notations. Here is a non-exhaustive list:

– barcodes;
– musical scores;
– mathematical formulas;
– astrologic and astronomic symbols;
– drawings (e.g. IBM-OEM line drawing characters);
– icons.

Each of these fields comes with its own recognition applications. The use of ty-
pography will definitely not solve all of them. But we are convinced that today’s font
handling facilities can be a precious knowledge source, and that it is worth revising
existing analysis techniques. When the objects to recognize can be matched with a
typeface, the output alphabet is implicitly fixed, which precludes possible ambiguities.
Even for occidental texts, most OCR encode some characters (like x, c�, fi, —, indicesi
and exponentsi) in a tricky way. A related advantage of using fonts in output formats is

4 There are a few exceptions, especially in newspaper typesetting.



that a graphical user interface can present the recognition results in their most natural
appearance. In general, the re-structured document automatically gets the status of a
production version.

4 Experiments and Results

4.1 Testbed and Data Set

Our experiments focused on a set of 174 well-known fonts. This represents eight fami-
lies (see Table 1), combined with two weights (regular/bold), two slopes (roman/italic),
and six sizes (8, 9, 10, 11, 12, 14). As current DIA databases [19] are not yet in-
dexed with detailed font attributes, we had to design our own data set. It contains one
document sample for each font, representing a unique English text, formatted in two-
columns. The documents were generated with LATEX, printed on A4 paper, and scanned
at 300 dpi. Finally we ground-truthed the images at the word level, in a semi-automatic
process.

Table 1. Typeface set for the reported experiments.

Seriffed Sans-serif Typewriter Script

lb:Lucida-Bright ag:Avant-Garde cr:Courier zc:Zapf-Chancery
nc:New-Century hv:Helvetica
pl:Palatino
tm:Times

These testing conditions seem fair, in the sense that our recognition tools do not use
the same font packages as for the production: we yet found a correspondence with the
fonts installed in our X11 system, but they are certainly not an exact copy of those used
in LATEX.

On the other hand, our experiments are intended to give only a rough approximation
of the practical reliability; the goal of this paper is to sketch some techniques based on
typography, not to claim their absolute superiority.

4.2 Font Recognition

The performance of a priori font recognition using ApOFIS is detailed in [22, 23].
In suitable conditions of learning, the classifier performs font recognition at the line
level with 95.8% accuracy. The detection of the font weight and slope is even more
accurate with rates up to 99.7%, while typeface and size are recognized with an average
rate of 96%. For our testing scenario, the training images are synthetic whereas the
recognition samples are scanned; moreover, the font packages are different. For 10pt
fonts, this reduced the median accuracy down to about 60%, with an important offset
between the best and the worst fonts.



To assess the a posteriori font recognition algorithm proposed in Sect. 3.2, we tried
to identify the font from every single word of the document samples, among the whole
font set. In fact, this is a very unfavourable scenario: in typical applications for instance,
font homogeneity constraints could bring a decisive improvement through the process-
ing of a sequence of consecutive words: if we err on one word with probability p (p
small), then the error rate on n words tends quickly to 0 when n grows.

Table 2 presents the recognition rates for 10pt fonts. The results show that the
method is as accurate as ApOFIS, having regards to their respective requirements. For
half of the fonts, the accuracy is over 90%. As expected, the confusions only occur be-
tween very similar fonts, and half of the misrecognized words are up to three characters
long. A detailed look at the worst cases revealed that there were important differences
between the production and recognition typefaces: for instance, Courier-Bold characters
have much smaller descenders in LATEX than its X11 counterpart, which leads to several
confusions between 9pt and 10pt when the words contain descending characters.

Table 2. Accuracy of the a posteriori font recognizer.

Font Accuracy Font Accuracy Font Accuracy

ag-r-r-10 0.98 nc-r-r-10 0.76 lb-r-r-10 0.62
ag-r-i-10 1.00 nc-r-i-10 0.96 lb-r-i-10 0.83
ag-b-r-10 0.89 nc-b-r-10 0.89 lb-b-r-10 0.75
ag-b-i-10 0.82 nc-b-i-10 0.93 lb-b-i-10 0.85

cr-r-r-10 0.94 pl-r-r-10 0.93 zc-r-r-10 0.97
cr-r-i-10 0.89 pl-r-i-10 0.96
cr-b-r-10 0.44 pl-b-r-10 0.49
cr-b-i-10 0.40 pl-b-i-10 0.78

hv-r-r-10 0.99 tm-r-r-10 0.81 *-*-*-10 0.83
hv-r-i-10 0.98 tm-r-i-10 0.73
hv-b-r-10 0.92 tm-b-r-10 0.93
hv-b-i-10 0.91 tm-b-i-10 0.94

4.3 OCR

A simple version of a monofont OCR based on X11 font management tools was tested
on our scanned samples. Table 3 reports the results for 8pt fonts. We must admit that
the recognition rates are quite low, and we are currently refining the naive algorithm on
several points.

On the same data set, ScanWorX achieves a recognition rate of over 99%, except
for a few fonts: ag-r-i (98.51%), pl-r-i (95.8%), tm-r-i (93.1%), and zc-r-r
(83.9%). Note that the accuracy drops when ScanWorX is parameterized for another
language, and even much more when the analysis is submitted on a single word image.
This means that ScanWorX makes an intensive use of lexical constraints, as well as
statistical character distribution. In general, commercial products tend to privilege the



Table 3. Character accuracy of our monofont OCR.

Font Accuracy Font Accuracy Font Accuracy

ag-r-r-8 0.952 nc-r-r-8 0.921 lb-r-r-8 0.926
ag-r-i-8 0.988 nc-r-i-8 0.928 lb-r-i-8 0.954
ag-b-r-8 0.984 nc-b-r-8 0.924 lb-b-r-8 0.924
ag-b-i-8 0.944 nc-b-i-8 0.995 lb-b-i-8 0.910

cr-r-r-8 0.691 pl-r-r-8 0.946 zc-r-r-8 0.886
cr-r-i-8 0.698 pl-r-i-8 0.924
cr-b-r-8 0.630 pl-b-r-8 0.966
cr-b-i-8 0.616 pl-b-i-8 0.963

hv-r-r-8 0.972 tm-r-r-8 0.932 *-*-*-8 0.900
hv-r-i-8 0.964 tm-r-i-8 0.936
hv-b-r-8 0.876 tm-b-r-8 0.922
hv-b-i-8 0.950 tm-b-i-8 0.956

most frequent usage; for special applications, the performance may not be as good as
expected.

4.4 Segmentation

The superiority of our a posteriori word segmentation tool over naive thresholding is
obvious, because it stems from the font design itself (see Sect. 3.4). It is more interesting
to draw a comparison with a representative commercial OCR: for instance, ScanWorX
avoids lots of segmentation errors using lexical information. As Table 4 shows with a
focus on 8pt fonts, many mistakes are still generated with this commercial software.

On the whole set of 174 fonts, our post-segmentation method generates remarkably
few errors, as stated in Table 5. A detailed look at those mistakes revealed that for
Palatino-Italic, LATEX uses a much smaller left bearing for the character f than the X11
font specification.

5 Conclusion

This paper discussed several possibilities of exploiting typography in the field of DIA.
Our contribution ranges from theoretical to practical aspects; more specifically, we:

– discussed the state of the art in font recognition, and advocated its highest form:
font understanding;

– designed a software platform that integrates a thorough font management in docu-
ment recognition components;

– proposed concrete algorithms and discussed their expected advantages;
– conducted several experiments with some of these techniques to assess their poten-

tial benefits over existing analyzers.



Table 4. Number of misrecognized inter-word spaces using ScanWorX.

Font Errors Font Errors Font Errors

ag-r-r-8 0 nc-r-r-8 0 lb-r-r-8 0
ag-r-i-8 8 nc-r-i-8 3 lb-r-i-8 9
ag-b-r-8 0 nc-b-r-8 0 lb-b-r-8 0
ag-b-i-8 8 nc-b-i-8 16 lb-b-i-8 4

cr-r-r-8 1 pl-r-r-8 0 zc-r-r-8 147
cr-r-i-8 5 pl-r-i-8 23
cr-b-r-8 1 pl-b-r-8 0
cr-b-i-8 1 pl-b-i-8 7

hv-r-r-8 0 tm-r-r-8 1
hv-r-i-8 2 tm-r-i-8 42
hv-b-r-8 0 tm-b-r-8 0
hv-b-i-8 3 tm-b-i-8 7

Table 5. Misrecognized inter-word spaces using our post-segmentation tool.

Font Errors Font Errors Font Errors

pl-r-i-8 2 pl-r-i-9 4 pl-r-i-10 1
pl-r-i-11 2 all others 0

The experiments showed that the analyzers based on typographical information can
rival traditional algorithms in accuracy, but without relying on complex heuristics. The
methods proposed for font recognition, OCR, or word segmentation are indeed very
simple and easy to program using X11; yet they proved to solve some non-trivial recog-
nition situations. In general, we advocate simple analyzers, because they are more easy
to integrate in the design of an adaptive, interactive and cooperative system.

In the CIDRE project, the problematic of DIA is taken in the broader sense of doc-
ument reverse engineering. This means that we do not want to break the inherent de-
pendencies from the production cycle. Here we presented typography as one possible
bridge between both processes, but we are also studying other implications for the mod-
eling of physical and logical structures [6]. As a general trend, interdisciplinarity will
remain a powerful inspiration engine in document recognition problems.
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